Votre panier est vide
Voir tous les autres produits Chargeurs
Chargeur de batteries UNITECK 12V et 8A
UNICHARGE 8.12
Chargeur pour batteries 12 V
Courant de charge batterie : de 2 à 8A
Compatible avec batteries de 10 à 250 Ah
Puissance maxi = 150 W
9 étapes de charge
Indication du niveau de charge à LED
Conçu et fabriqué en France
Tous nos moyens de paiements sont sécurisés
Le matériel commandé est assuré durant tout le transport jusque chez vous
Civisol vous garantit une satisfaction totale et reprend vos articles inadaptés
Description
Doté d’un algorithme de charge multi-étape de dernière génération, le chargeur de batteries Uniteck 12V - 8A recharge parfaitement à 100% et sans surveillance tous types de batteries au plomb : à électrolyte liquide, à électrolyte gélifié (GEL) et AGM (sans entretien).
Conçu et développé pour toutes les applications, UNICHARGE est le chargeur idéal pour la recharge des batteries solaires, batteries de véhicules (auto, moto, camping-car/caravanes, scooter, scooter des neiges, tracteurs et machines agricoles), de bateaux, d’alarme, de clôture...
Le chargeur de batteries Uniteck 12V - 8A est également bien plus que de simples chargeurs standards, il :
UNICHARGE est équipé d’origine d’un kit connexion pinces, mais aussi d’un kit connexion œillet, idéal pour les charges régulières ou pour les batteries difficiles d’accès.
Le modèle 8.12 dispose en plus de la technologie «Charge control» sur leur connexion œillet, ce qui permet de vérifier visuellement et simplement l’état de charge de votre batterie.
Détails techniques
Documents
Questions(FAQs)
Lorsque vous souhaitez recharger une batterie avec un ou plusieurs panneaux solaires, que ce soit pour un site isolé, un van, un camping-car, un bateau ou autre, la base de votre réflexion doit être la batterie ou le parc de batteries.
En effet à partir des caractéristiques de votre/vos batterie(s) que sont : le type de batterie (Gel, Agm, plomb ouvert, OpZv, Lithium-ion,...), la tension et la capacité de la batterie, vous allez devoir choisir non seulement le(s) panneau(x) soliare(s) mais aussi et surtout le régulateur de charge qui va adapter le courant de sortie du panneau et le rendre compatible avec les caractéristiques de charge de votre batterie (ou de votre parc de batteries si vous en avez plusieurs).
C'est donc bien le couple panneaux/régulateur qui est à choisir et pas seulement les panneaux.
Le régulateur doit être capable de gérer le type de batterie et la tension de cette batterie. Ensuite le courant de charge devra être suffisant pour recharger la batterie.
A retenir : la règle générale pour le courant de charge des batteries classiques au plomb (plomb ouvert, Gel, AGM,...) est qu'il ne doit pas dépasser 20% de la capacité du parc de batteries. C'est à dire que pour un parc de batteries de 200 Ah, le courant de charge maxi ne devra pas dépasser 40A au risque de détériorer les batteries.
En conclusion:
Reportez vous aux caractéristiques de votre batterie, et choisissez le couple régulateur de charge / panneaux en adéquation.
Généralement les fabricants de régulateurs de charge indiquent clairement le courant de charge maxi ainsi que la puissance en Wc possible en entrée. Le choix n'en devient que plus facile.
Le matériel que nous vendons sur notre site est fabriqué par des fournisseurs très fiables (pas de sous marque made in China). Les pannes sont donc extrêmement rares.
Néanmoins en cas de soucis sur le matériel, c’est le fabricant qui le garantit, mais nous proposons à nos clients d’être leur interlocuteur unique dans le but de leur rendre les démarches les plus simples possibles.
Une installation solaire photovoltaïque implique parfois l'utilisation de batterie(s) pour le stockage d'une partie de l'électricité produite, pour la restituer en l'absence de soleil. C'est le cas notamment pour les installations sur sites isolés (non connectés au réseau) ou sur les camping-cars et les bateaux.
Pour protéger les batteries on utilise un fusible (et un porte-fusible).
Le choix d'un fusible se fait par 2 critères assez simples : la tension et l'intensité.
Mais pour bien comprendre le choix de ces 2 critères nous allons commencer par rappeler le rôle du fusible.
Le fusible est un composant servant à protéger les matériels électriques auxquels il est relié, contre les surtensions, mais surtout les surintensités qui sont plus fréquentes.
En effet les surintensités, sont les intensités de court-circuit qui surviennent lors de la défaillance de l'un des composants d'une installation électrique.
Le fusible est sensible à la tension et à l'intensité du courant qui le traverse. Si l'une de ces composantes dépasse la valeur (maxi) du fusible, alors il fond (on dit aussi qu'il "grille") et n'assure plus la conductivité. Le courant ne peut plus le traverser évitant ainsi d'endommager le matériel qu'il protège.
Lorsque cela se produit, il est alors nécessaire de remédier à la défaillance matériel ayant entrainé une valeur d'intensité trop importante, puis remplacer le fusible.
Le choix de la tension est assez simple. Il faut prendre un fusible indiqué pour une tension supérieure ou égale à la tension du parc batterie.
Souvent les fusibles pour les parc de batterie de 12 et 24V sont des fusibles de 32A, alors que ceux pour les parc batterie de 48V sont des fusibles de 58V.
Pour le choix de l'intensité du fusible c'est légèrement plus compliqué. Il faut définir l'intensité maximale qui va, en utilisation normale, circuler entre le parc de batteries et le matériel auquel il est relié.
Attention : il ne faut pas prendre la valeur de capacité (en Ah) de la batterie. C'est une erreur fréquemment faite.
Prenons l'exemple d'un parc de 4 batteries de 12V et 200Ah chacune, reliées ensemble en série et connectées à un onduleur hybride de puissance nominale 3 kW (3000 W).
Les batteries étant reliées en série, les tensions s'additionnent mais pas les capacités. Le parc batteries a donc une tension de 48V et une capacité de 200Ah.
Voici un petit schéma qui rappelle les principes de câblage des batteries:
Il y a échange de courant entre l'onduleur hybride et le parc de batterie lors de la charge et lors de la décharge.
Lors de la charge : l'intensité maxi du courant qui peut être envoyé par l'onduleur hybride au parc de batterie est indiqué sur la fiche technique de l'onduleur. Elle est généralement nommée "intensité de charge max". Prenons 80 A dans notre cas.
Lors de la décharge : il faut se baser, non pas sur la puissance nominale de l'onduleur (3kW dans notre cas) mais sur la puissance maximale qu'il est prêt à délivrer pendant un cours instant (généralement 5 secondes). Cela est indiqué aussi sur la fiche technique de l'onduleur. Souvent cette puissance maximale est égale à 2 fois la puissance nominale. Dans notre cas ce serait 6 kW.
Donc l'onduleur va être amené à puiser 6 kW dans les batteries en courant continu pour délivrer 6 kW de courant alternatif (au détail près du coefficient de rendement). Donc l'intensité max du courant qui va sortir des batteries lors de la décharge est égal à 6 kW / 48 V = 125 A.
La tension max de charge étant plus faible que la tension max de décharge, c'est sur cette dernière qu'il faut se baser pour définir l'intensité du fusible.
Il faut donc prendre un fusible dont l'intensité est un peu supérieure à 125 A, de sorte que lorsque l'onduleur puise la puissance max., le fusible ne "grille" pas, mais que si l'intensité qui le traverse est anormalement plus élevée, alors il joue son rôle et empêche le courant de passer.
Dans cet exemple, nous pourrions prendre un fusible 58V - 150A.
Voilà vous savez tout sur le choix du fusible qui protègera efficacement vos batteries.
La recharge de votre batterie solaire par l'alternateur de votre camping-car (par exemple) est tout à fait possible. C'est même une option qui est recommandée.
En effet, même si le but de l'alternateur est de recharger votre batterie de démarrage et de fournir l'électricité nécessaire au bon fonctionnement de votre véhicule, il faut savoir que ce dernier subvient très largement à ce besoin.
A titre d'information un alternateur de véhicule délivre une intensité comprise entre 60 A, pour les modèles les plus anciens, et 120 A pour les modèles récents, avec une tension de 14,2 V (supérieure à 12V pour la charge de la batterie). Cela fait donc une puissance délivrée entre 850 et 1700 W.
Par conséquent une partie importante de l'énergie produite par l'alternateur n'est pas utilisée par votre véhicule et peut être utilisée pour charger la batterie de votre installation solaire.
Mais il ne peut pas la charger à 100%.
La tension délivrée par l'alternateur est de 14,2V. C'est inférieur à la tension d'égalisation qui est la tension qui permet de charger une batterie 12V à 100%.
Par conséquent elle ne pourra être plus chargée que 85% environ. C'est assez intéressant pour envisager de connecter votre batterie solaire à votre alternateur. Imaginez l'intérêt lors des déplacements à l'occasion journées nuageuses.
Pour connecter correctement votre batterie solaire à l'alternateur de votre véhicule pour profiter du courant de charge disponible lorsque vous roulez, vous pourriez être tenté de tout simplement brancher votre batterie solaire sur les bornes de votre alternateur. Mais cette façon de faire est vivement déconseillée, car de cette manière :
Il est donc vivement recommandé d'utiliser un répartiteur de charge ou un coupleur/découpleur de batteries.
Mais attention, cela ne s'applique pas lorsque vous connecter plusieurs batteries ensemble pour former un parc de batteries d'une certaine tension et capacité. Cela ne s'applique que lorsque vous avez à gérer la charge de batteries qui ne sont pas connectées entre elles, car destinées à des applications différentes (ex: batterie de démarrage et batterie de l'installation solaire).
Comme son nom l'indique, le répartiteur de charge répartit la charge de votre alternateur sur chacune de vos batteries sans perte de puissance tout en isolant chaque batterie pour éviter qu'elles déchargent entre-elles.
Son branchement nécessite de débrancher la sortie + de l'alternateur pour la connecter sur le répartiteur, qui va lui ensuite répartir cette charge.
Les dernières générations sont dotées d'électronique qui leur permet d'optimiser la charge de la batterie malgré une tension de sortie d'alternateur inférieur à la tension d'équilibrage.
Le schéma ci-dessous illustre ce principe de branchement.
Le coupleur / séparateur s'adapte aux véhicules, bateaux mais aussi site isolés.
Ils permettent de :
A la différence du répartiteur, il n'est pas nécessaire de dévoyer la sortie + de l'alternateur. Il suffit de connecter le + de la batterie principale (batterie de démarrage) au coupleur/séparateur. Il n'y a donc pas de modification à réaliser sur l'installation existante, ce n'est qu'un ajout. L'installation est donc plus simple que pour un répartiteur de charge.
Les schémas ci-dessous présentent le principe de câblage d'un coupleur/séparateur dans le cas d'un véhicule ou d'un site isolé.
Quelque soit l'application, il est conseillé de systématiquement protéger vos batteries par des fusibles proprement dimensionnés.
Le branchement direct sur batterie solaire 12V est le fonctionnement normal pour les appareils 12V..
En effet, les appareils électrique 12V fonctionne sur une plage en entrée : pour les meilleurs 7V-30V DC. D’autres, 7V-21V, 9V-17V
Les stabilisateurs 12V DC /DC sont essentiellement utilisés pour soit :
- des appareils anciens ou 1er premier prix en électronique ex. ancien sondeur, carte GPS qui lors de chutes de tension environ 10V se coupent et doivent être relancés.
- Ou pour supprimer les parasites électromagnétiques qui peuvent être créés et interférer sur certains appareils sensibles types radio. Suppression de parasite grâce à l’utilisation de convertisseurs DC DC isolés.
Pour le 230V, il y a aussi des tolérances de fonctionnement, ENEDIS assurent un niveau de tolérance +/-10%, d’où de la majorités des appareils électriques qui fonctionnent en 230V +/- 15%.